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Abstract

There are many examples of allocation problems where the final alloca-
tion affects more than one agent, but the models developed to study them
typically allow for side payments between agent. However, there are political
economy applications where it is hard to imagine monetary transfers between
the agents, at least not legal ones. In this paper we propose a general political
economic framework for the study of allocation problems with externalities
without side payments. We consider a setup with complete information and
we formulate the problem as one where the status quo describes an initial
allocation that can altered in a sequence of proposals. The number of these
proposals is restricted. In the context of our main application, bidding for
slots on a legislative agenda, such restriction can be interpreted as scarcity
of plenary time for considering the possible bills to move the policy. The
intuition for our model comes out of framing the problem as a special type
of a multi-good auction. We show that equilibria generically exist within the
general model.

1. INTRODUCTION

There are many examples of allocation problems where the final allocation affects
more than one agent. For example, auctions where the allocation of the good imposes
an externality on the buyers who do not obtain the good or in all-pay contests.! The

*We thank Douglas Bernheim, Gary Cox, Matias Iaryczower, Matthew Jackson, Preston McAfee,
Barry Weingast, and William Zame as well as seminar participants at the Hoover Insitution, the Uni-
versity of California, Berkeley and the University of California, San Diego for helpful comments. Copi¢
acknowledges the financial support of the Social and Information Sciences Laboratory at Caltech and the
Cowles Foundation for Research in Economics at Yale University and Katz acknowledges the financial
support of the Center for Advanced Study in the Behavioral Sciences.

! Auctions with externalities have been studied by McAfee and McMillan (1992), Jehiel et al. (1996),
Jehiel et al. (1999). For recent work on all-pay contests with complete information see Siegel (2006).



literature on allocation problems with externalities has focused mainly on the question
of mechanism design such that the seller can maximally extract the available surplus.
An important feature of all of the models in this literature is that there can be side
payments between the agents to compensate for the imposed externality. Indeed, optimal
mechanisms often involve transfers between a large subset of the agents. However, there
are political economy applications where it is hard to imagine monetary transfers between
the agents, at least not legal ones. Consider, for example, a legislature moving policy
from the status quo to some other point in the policy space. Even in more traditional
economic examples, one can easily conceive of environments in which the agents are risk
averse with respect to monetary payments, and such examples cannot be analyzed with
the tools of the existing literature.

In this paper we propose a general political economic framework for the study of
allocation problems with externalities without side payments. We consider a setup with
complete information and we formulate the problem as one where the status quo describes
an initial allocation that can be altered in a sequence of proposals. The number of these
proposals is restricted. In the context of our main application, bidding for slots on a
legislative agenda, such restriction can be interpreted as scarcity of plenary time for
considering the possible bills to move the policy. In the context of allocation of goods,
which we do not consider, the interpretation of such a restriction would be simply that
there is a finite number of goods to be allocated.

This feature that plenary time — the time consumed in plenary session when impor-
tant bills are considered by formally stated motions that must be voted upon — is scarce,
is an ubiquitous feature of all legislatures (Cox 2006).> In fact, this scarcity has been
argued to lead to many of the structures we see in modern legislatures (Cox 2006, see
also Polsby, Gallaher, Rundquist 1969). Yet, no models of legislative bargaining explicitly
include this scarcity. The standard models assume what we will call independent schedul-
ing. That is, the likelihood that a bill is considered by the full chamber is independent of
its content and the other bills proposed. For example, in Shepsle (1979) every committee
is a monopoly supplier of proposals in their given jurisdiction with guaranteed access to
a floor vote for their bill. Baron and Ferejohn (1989) allow that some agents may not
necessarily be able to make proposals, but the likelihood that a particular agent can make
one does not depend on her actual proposal. The Baron and Ferejohn (1989) model has
been extended to allow for endogenous proposal probabilities, but these probabilities are
determined ez ante, given a member’s seniority (McKelvey and Reisman 1992). Yet, no
modern legislature works this way. For example, in the U.S. House of Representatives
scheduling matters are handled by the Rules Committee, arguably the most powerful
committee in the chamber. The Rules Committee is well aware of a bill’s content, as well
as any proposed amendments, before it allows it to be scheduled for a floor vote.?

2For example, it is not possible that a legislature could meet in a plenary session for more than 24
hours a day and often there are constitutional limits on the number of days a given legislature can be
in session.

3In fact, the Rules Committee also gets to choose the rules for the vote, which gives it even more
power.



We thus develop a general model of legislative scheduling with scarcity, framing the
problem as a special type of a multi-good auction. Here the “goods” to be auctioned
off are the limited slots for floor votes and some agent is charged with choosing which
bills will be chosen for votes. This scarcity induces competition for these limited slots.
However, the situation is more complicated than in a standard auction, because agents
can only bid in terms of policy proposals and they all care about the finally enacted
policies. At the same time, no side payments are allowed. In a standard auction, agents
care about the bids of other players only insofar as it affects the price they must pay
for the good, and in the aforementioned literature on auctions with externalities, side
payments are allowed between the agents. In the legislative situation, on the other hand,
if another agent’s proposal is chosen, it will change the set of final enacted policies and,
therefore, all agents’ payoffs. Thus, there are built-in externalities within the model.
Given that in most democracies contracting on side payments with politicians is illegal,
it will be difficult to internalize and price these externalities. Even with this difficulty,
we show that equilibria generically exist within the general model.

While our general model provides a very flexible framework that can be extended in
many directions, we add some details in order to make interesting comparative-statics
statements. We do so in what we think of as the simplest case of complete-information
legislative bargaining. We use our framework to generalize Shepsle’s (1979) model. In our
model of legislative bargaining, competition for access to the floor induces a final policy to
move towards the policy preferences of the scheduling agent, even if the policy preferences
of the proposers are aligned and contrary to the scheduling agent’s preferences.

In Shepsle’s (1979) view of committees, which has dominated the literature, as monopoly
suppliers of policy proposals, there are serious agency problem within the legislature be-
cause the committees can use their agenda power to extract all the surplus from the
majority (see also Denzau and Mackay 1983).% The conventional wisdom was that the
only real way to ameliorate this agency loss was by screening. This lead to a volumi-
nous empirical literature on whether or not legislative committees are preference outliers
(see, for example, Cox and McCubbins 1993, Londregan and Snyder 1994, Poole and
Rosenthal 1997). Our model, however, suggest a new way to think about this agency
problem. When we include competition for plenary time in the model, this competition
can prevent the agency loss if the scheduling agent is chosen correctly. Nevertheless, this
may create another agency problem in the choice of the scheduler.

As noted above, the legislative scheduling problem has not really been studied. The
most directly related work is by Cox and McCubbins (1993), who model the scheduling
process under incomplete information as a multi-armed bandit problem. However, their
model is non-strategic and they do not examine the impact of competition on proposal
behavior. They instead examine the order the scheduling agent would have proposals
voted on. McKelvey and Riezman (1992) take a totally different approach whereby
the recognition probability of a member is determined by a seniority rule in order to

4Gilligan and Krehbiel (1990) also generate agency problems with legislative committees but because
of informational asymmetries; see also Krehbiel (1992).



endogenously generate an incumbency advantage for the members of the legislature,
but they assume independent scheduling. There have also been a number of papers on
endogenous agenda formation, such as Banks and Gasmi (1987) and Penn (2005), but
these are best characterized as determining the amendment tree of a single bill and again
assume independent scheduling of the final votes.

The rest of this paper is organized as follows. In Section 2 we provide a very simplified
example of our model to give some guiding intuitions. In Section 3 we give the general
framework for our political economy model, the scheduling game. In Section 4 we apply
this framework to a more specific model of legislative voting game, and we provide a
comparative-static result for that game. In Section 5 we give some additional insights into
the workings of the legislative model. In Section 6 we examine the impact of scheduling
on assignment of committee jurisdictions. Finally, in Section 7 we discuss other potential
applications of our model, as well as possible extensions to incomplete information.

2. MOTIVATING EXAMPLE

In this section we illustrate the basic intuitions of our approach with examples of
outcomes of a very simple case of the legislative game. We show how competition for
slots on the agenda affects the proposed bills and the outcomes of the legislative process.
We consider a simple setup with 2 committees (voters) and Speaker, the agenda-setting
agent.” In the first stage of the game the agenda is determined (either by Speaker, or
randomly), and in the second stage the status quo is voted against the whole agenda in
one up or down vote. We compare the outcomes under legislative competition to two
benchmarks: no competition, where there are enough slots to accommodate all proposals;
and independent scheduling of slots under a budget constraint on the number of slots,
where the likelihood of getting a proposal on the agenda is independent of the content of
the proposal. These comparisons highlight the effect of Speaker’s agenda-setting power.

There are 3 agents, N = {0,1,2}. Agent 0 is a principal, Speaker, and agents 1 and
2 are the committees, who on the one hand make proposals, and on the other hand they
vote between the final proposed move and the status quo. The outcomes are represented
by %, and 0 = (0,0) € R? is the status quo. Each voter i € N has quadratic preferences
over outcomes, with an ideal point y; € ®2. The utility function of agent i, u; : R2 — R,
is thus given by

uz(x) = _||X - yi||2 = —(z1 — yi,l>2 — (z2 — yz‘,2)2,$ € §R2,

where ||.|| denotes the Euclidian norm on R?. The length of the agenda is denoted by
T, T € {1,2}. For the rest of this section we assume that yo = (—1,—1), 11 = (1, k),

5We choose the term Speaker because this is the title of person in control of the schedule in the U.S.
House of Representatives. However, all democratic legislatures that we are aware of delegate scheduling
to some member or committee — such as a prime minister, cabinet, chairperson, or president.



1>k >0, and yo = (1,2).The examples here do not hinge on precise parameter values,
but this parametrization allows us to illustrate the analysis.

The legislative game is as follows.

e In stage 1, each voter ¢ = 1,2 proposes a move from the status quo on dimension i.

e In stage 2, Speaker must select exactly T of those proposals, e.g., if T = 1 then
Speaker has to make the choice between one or the other proposal.

e In stage 3, voters and Speaker vote (by majority) between implementing either
the status quo or the move from the status quo given by the combined selected
proposals.

We study the subgame-perfect Nash equilibria (SPNE) of this game.

The first stage corresponds to a process where committees have jurisdictions and are
only allowed to propose moves from sq within their jurisdiction. In the second stage, the
assumption that Speaker has to select precisely T proposals corresponds to having no
gate keeping power in the agenda-formation process. Finally, in Stage 3, Speaker only
has a tie-breaking vote - in an example with an odd number of voters he would never
vote, and with an even number of voters he votes when there is a tie.

We start with the benchmarks of no competition and independent scheduling. In
both of these cases, the incentives of the proposers 1 and 2 are very similar: a proposer
just makes a proposal that will make the agenda optimal for him conditional on being
acceptable to the majority (or unacceptable to every majority, if the proposer prefers sq
to every other majority-feasible outcome).

No competition, T = 2. Since Speaker must choose both proposals the only constraint
that the proposers have to consider is the majority-voting of Stage 3 - effectively, the game
only has two stages (1 and 3). There are two SPNE outcomes. One is the status quo.
This obtains for example if each proposer proposes a very extreme move which makes
by itself status quo the preferable outcome to all agents (this requires the use of weakly
dominated strategies). The unique SPNE outcome other than the status quo is the point

(1, min{y/1+ (1 + k)2, 2}), Vk € [0, 1], where in every voting subgame voter 1 votes for

the move whenever indifferent between the move and the status quo. We show this for
k = 0, the logic for k € (0, 1] is exactly the same. First, it is enough to consider proposals
m;, such that m; < y,;;, @ = 1,2 - a voter never has an incentive to propose a move that
is further than the ¢th component of his ideal point. Since k = 0, proposals m; = mgs =1
constitute mutual best replies, when in the voting stage voter 1 always votes for the move
whenever indifferent between status quo and the combined move (my, msy). Next, for ev-
ery proposal my of voter 1, voter 2’s best reply is to propose an ms such that (my,ms)
is on 1’s indifference curve through 0. But 1’s best reply is then to either propose some-
thing on 2’s indifference curve through 0 or to propose a move of size 1, whichever of the



two is smaller. Indeed, (1, 1) is the unique SPNE outcome different from the status quo.
Note that if ideal points are y; = (1,0),y2 = (0, 1) the set of Pareto-optimal outcomes is
(s,s),s € —1, %], and only the status quo so that the outcome (1, 1) is not Pareto-optimal.

Independent scheduling, T = 1. The bid of each voter now reflects only that con-
ditional on his proposal being selected, the proposal has to just beat status quo in the
voting stage. The equilibrium proposals of the two proposers are

my = ]_,mg = 2k.

Agent 1 bids his ideal point on dimension one, since that is preferred to the status quo
by a majority consisting of 1 and 2. Agent 2 bids the point that makes 1 just indif-
ferent between 2’s proposal and the status quo. The equilibrium outcomes are then
either (1,0) or (0,2k), and which of the two obtains depends on the specifics of the
independent-scheduling protocol — e.g., seniority ordering, or any ordering given by some
other exogenous variable or process.

Agenda competition, T = 1. Due to scarcity of slots, each proposer may have an
incentive to outbid the other in the bidding stage. There are 2 cases. If £k < 1 then the
unique equilibrium outcome is 0. In Section 5 we provide simple conditions which assure
that status quo is the unique equilibrium outcome. If £ = 1 then these conditions are
not satisfied, and indeed each outcome (0, s), s < 1, can be supported as an equilibrium
outcome. In the following paragraphs we show these claims directly.

Case 1: k < 1. For every proposal m; > 0 of proposer j, there exist proposals m; < m;
for proposer i, such that the move of the size m; in the direction ¢ makes i better off
than a move of the size m; in the direction j. Figure 1 illustrates this. It depicts the
situation where k = %, so that y; = (1, %), and the lines [; and [, show the distance from
y1 to the outcomes that are obtained by a move of 0.5 on either of the two dimensions.
Speaker is indifferent between these two moves, while proposer 1 prefers the move on
dimension 1. Lines I3 and l4 indicate the distances to 2’s ideal point from the outcomes
under the two moves: 2 prefers the move on dimension 2. Since m; then gets selected
by Speaker (because m; > m;), it follows that at least one proposer proposes m; = 0,
and the unique equilibrium outcome is 0.6 It is easy to see that the crucial geometric
condition here is that the ideal points of the proposers lie on different sides of the line
x1 = x9. This condition is a simple version of sufficient conditions assuring status quo,
which we provide Section 5.

Case 2: k = 1. Between two equidistant moves (less than 1) along either of the axes both
voters now weakly prefer (and voter 2 strictly prefers) the move along axis 2, which

SFor instance, if 1 proposes m; = 5,0 < s < 1, then the utility of 2 under such move is us(s,0) =
—(1 —s)? — 22, while u2(0,s) = —12 — (2 — 5)? < ua(s,0), so that there indeed exist proposals my by
2, such that my < s and u2(0,ms2) > ua(s,0). Note that if ¥ = 0 then a positive move along the axis 2
cannot get a majority support anyway.
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Figure 1: An example of the three-person legislative game with agenda competition and
k = % Given that k& < 1, the unique equilibrium outcome is 0 as each voter has an
incentive to “outbid” the other.

facilitates the set of equilibrium outcomes. Figure 2 illustrates 1’s indifference between
the moves for 0.5 on either of the two axes. The lines denoted by [, and I (which are now
of equal length) show the distance from his ideal point y; to the attained outcome under
each of the two moves. Thus, if both agents propose m; = s and Speaker selects mo,
this is an equilibrium with the outcome (0, s) — Speaker has to resolve his indifference in
precisely the right way - by picking 2’s proposal when indifferent. Similar result obtains
for k > 1.

We stress a few observations to which we return in subsequent sections. First, the
equilibrium always exists. Under no competition or independent scheduling this follows
from standard arguments. However, in the legislative game, under competition standard
arguments are invalid as it is a game of discontinuous payofts, and best-reply correspon-
dences are empty at many proposals. These problems can be sidestepped by determining
Speaker’s indifference-breaking rule as a part of equilibrium, it may be different at dif-
ferent points, and it can then be shown that the equilibrium then exists in the general
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Figure 2: An example of the three person legislative game with agenda competition and
k = 1. In this case any outcome (0, s), s < 1, can be supported as an equilibrium. The
picture shows the case with s = 0.5.

model.” A feature of the legislative game is that Speaker’s indifference-breaking rule is
generically deterministic — it might still be that at different points in the space of bids,
Speaker resolves his indifference in favor of different proposers.

The second observation concerns the comparison of equilibrium outcomes under com-
petition with those under independent scheduling. The set of outcomes under competition
moves closer to Speaker’s ideal point. This is apparent in the above example, and the
intuition is that under competition agents have incentives to make proposals that are
closer to Speaker’s ideal point; under independent scheduling no such incentives exist. In
Section 4 we prove a general comparative-static result of this sort.

While one may think that the comparison with no competition works in a similar way,
this turns out not to be the case. Then, there are two effects which work in opposite
directions: if the preferences of all the agents are closely aligned with Speaker’s then
having more slots might give more possibilities to move the outcome closer to Speaker’s

"This idea comes from Simon and Zame (1990) and we use their main Theorem 1 to prove existence
here.



ideal point, while if agents’ preferences are less aligned with Speaker’s then having more
slots will decrease competition and move outcomes further away from Speaker’s ideal
point. This comparison is therefore in general specific to the preference parameters of
the agents, and we formalize this with a simple example in Section 4. In Section 5 we
show that even under fixed preferences which are not aligned with Speaker’s it is not
necessarily the case that fewer slots move the outcome closer to Speaker’s ideal point.

3. THE SCHEDULING GAME

In this section we present the general model which we call the scheduling game. This
provides a much more general framework than the introductory example of Section 2. In
Theorem 1 we show the existence of an equilibrium of the scheduling game.

The set of agents is N = {0,...,n}. Agents 1,...,n are proposers (or voters), and
agent 0 is the agenda setter (or Speaker). The set of possible outcomes is M, where
M is some metric space. There is a status quo, ms, € M, without loss of generality
assume that mg, = 0. Agents’ preferences over points in M are rational and are given by
== (>0, ..., ~n). We assume that for each i, =, is representable by a continuous function
u; - M — R.

Scheduling game proceeds as follows. In the first stage each agent ¢ € N \ {0}
makes a proposal, m; € M;, where M; is a compact subset of M. We call M; the
gurisdiction of proposer i. Proposers submit their proposals simultaneously. The number
of proposals that can be considered is limited by 7" < n. We call T' the length of the
agenda, and it is exogenously specified. In the second stage, agent 0 picks 1" proposals,
L c N\{0},|L| = T.® In the third stage, the final outcome is selected by voting between
the status quo and the outcome given by the selected proposals. Formally, denote by
V,(x,y) the g-majority voting correspondence, i.e.,

V(z.y) x if AN’ C N s. t. ||]J\G||anndxiiy,W€L,
.T, - ! .
Y y if AN’ C N s. t. ||]]\\[,|| >qgandy >; x,Vi € L,

where ¢ > %, and z,y € M. The final outcome of the third stage is then given by

CLQ<m7 L) = V;J(O: Z mt)'

teL

We remark that our model of the legislature is in reduced form. That is, in practice,
we want to think of one period as an entire legislative session. For example, the session

8 As we noted in Section 2, one could also consider an extension of this model where 0 can pick less
then T proposals, but in the present work we limit ourselves to the case when 0 must choose T proposals.
Even in the present scenario the final outcomes will be very favorable to the agenda setter relative to
the case without agenda competition.



of the U.S. Congress is 2 years. During this period, the outcome is then moved from
the status quo vote by vote, rather than in one combined mowve, as in our model. First,
in a complete-information environment, the equilibria in our model will subsume the
equilibria of a sequential model. Second, showing equilibrium existence can easily be
extended to a sequential model. Nevertheless, a sequential model will be much more
difficult to analyze, and our results provide a useful starting point.

We interpret the present model as one where agents 1, ..., n are committees, and M; are
their jurisdictions, so that the committee ¢ can only propose a move from the status quo
in her jurisdiction M;. In this simplest setup, each committee is one voter: we abstract
from the fact that committees may be composed of many voters and the proposed moves
may themselves be a result of some voting or negotiation process. Agent 0, Speaker, has
monopolistic power over the agenda, and picks among the proposals that he likes most.”

We consider the subgame-perfect Nash equilibria (SPNE) of the scheduling game. To
be precise, a SPNE is given by a vector of proposals, m* € X;cyM;, and a mapping
L*: xjenM; — {L | L C N,|L| =T}, such that

ag(m*, L(m")) =¢ a,(m*,L),YL C N, |L| =T,
aq(m’, L(m")) =i ag(mZ;, ms, L(m~;, m;)),Vm; € XienM;, Vi € N.

Thus, m} is the proposal of proposer i, and, for each m € X;enyM;, L*(m), is the set
of proposers selected by the speaker. An outcome of a SPNE is determined by m* and
L*(m*); we will often abuse the notation and denote L*(m*) = L*.

In the scheduling game, existence of SPNE is not obvious. The difficulty is that best-
reply correspondences of agents N \ {0} can be empty at many points - the game has
similar features as a Bertrand game in the sense that an “under-cutting” of proposals
occurs at proposals m that are out of equilibrium. In particular, the set of proposals that
a voter may deviate to is generically open, hence no best-reply exists at many points out
of equilibrium.

To illustrate this recall the agenda competition of Section 2, and consider the situation
when £k = %, so that the ideal points of the proposers are y; = (1, %) and yo = (1,2).
Then, if for instance proposer 1 proposes m; = %, the best reply to such proposal by

agent 2 is my = max(0, 5) which does not exist.

The way around these problems is by use of Simon and Zame (1990) result. In our
case their result implies that if the indifference-breaking rule of agent 0, when faced with a
vector of proposals m = (my, ..., m,), is determined in equilibrium, then such equilibrium
always exists. More precisely, we use backward induction and show that the subgame-
perfect equilibrium correspondence from the first-stage proposals of agents N \ {0} into
outcomes, ) : My X My x ... x M,, — M, satisfies the assumptions of Simon and Zame

90ur analysis can also be extended to the case where agent 0 is a dictatorial auctioneer, and there is
no voting stage, i.e., agent 0 just picks T proposals and this determines the final outcome. Such model
is applicable to examples of auctions with interdependent preferences.

10



(1990) if the indifference-breaking rules in subsequent stages are left to be specified in
equilibrium. Thus, a SPNE of the game exists. The proof of the following theorem is in
the Appendix.

Theorem 1. The set of SPNE of the Scheduling game is non-empty.
4. THE LEGISLATIVE GAME AND COMPETITION

The purpose of this section is to demonstrate the richness of our framework in a rela-
tively simple setup of the legislative game which we already introduced in Section 2. Our
main general result is a comparative-static comparing across two different institutions,
one of them being the legislative game. Another possible comparative-static exercise is
the comparison along different constraints in terms of the number of issues that can be
considered.!” In this section we demonstrate with a very simple example that this second
comparative-statics exercise depends heavily on the specific parameters of the model even
in the simplest comparison when the time constraint either is binding or it is not binding
at all. In the next section, we return to this second exercise. There we show in a specific
setup, that the outcomes can move non-monotonically with the number of proposals that
can be considered.

The legislative game is defined as the scheduling game where M = R and for each
1€ N,
M; = {m; | mi € RV 0 [ KN = 0,95 # i,

where K > is some large constant. The preferences of each agent ¢ € N are quadratic
with an ideal point y; € RV, that is,

Mz

— Yij) > ieN.
j=].

As in the general scheduling game, the number of slots on the agenda is T < |N].

Remark 1. It follows directly from Theorem 1 that an equilibrium of the legislative
game always exists. What is particular to the legislative game is that the indifference-
breaking rule of Speaker is in equilibrium generically deterministic, at each point of the
space of proposals. This follows from strict quasi concavity of preferences so that if
Speaker randomized between selecting proposals of two different proposers, at least one
of the proposers would in a generic situation be able to bid slightly closer to Speaker’s
ideal point and be selected for sure. By generic we mean that the set of collections of
proposers’ ideal points for which this logic does not hold has a Lebesgue measure zero.

10Tn the present model, the number of slots can be thought of as a representation of the physical
constraints faced by the legislature. Such constraints might be either simply technological (e.g., the
amount of paperwork that can be processed), or institutional, as the rules of the institution might
impose more or less friction on the legislature and thus affect the number of proposals that can be
considered.

11



To introduce the legislative game, we provide a simple example of a well-known leg-

islative strategy of killing a bill by appending an unappealing amendment. Aside from
this positive observation, this example demonstrates very clearly the issues that arise
in the equilibrium analysis of the legislative game. In the configuration of this section,
if the outcome is non-zero, it must be that all agents ¢ = 1,...,n prefer that outcome
to sq. For if the Speaker has only one “accomplice” (who prefers status quo to given
proposals), that will be enough to force the zero outcome: that proposer can kill the bill
by proposing far-fetched proposals which the speaker puts in his selection in order that
sq be preferred by the majority.
Example 1 (KiuL Binn). Let N = {0,1,2,3},ie,n =3,y =(—1,—1,-1), ) =y =
(1,1,0), y3 = (—1,—1,0), and T' = 2 (note that there are 3 voters so that Speaker doesn’t
vote but only selects the agenda since there is never a tie-breaking situation). Then 0 is
the unique equilibrium outcome, and it is not supported by agent 3 proposing 0, but for
example by proposals m; = my = 1 and mg = 10.

We now consider the first comparative static across institutions. The comparison here
is with the institution that we call Independent Scheduling (IS),

Definition 1 (INDEPENDENT SCHEDULING). First, a deterministic ordering L’ of pro-
posers is exogenously specified. Next, the proposals of the first T" proposers are selected.
Finally, the outcome is determined by voting between the status quo and the vector of
selected proposals.

Under IS, Speaker plays no role (except for having the tie-breaking vote). Denote by
m* (L") the SPNE vector of proposals of the voters under IS, given the exogenous or-
dering is L.

In the next proposition we provide a comparative-statics result showing that compe-
tition is an important force driving the outcomes. This proposition shows that Speaker
is better off in the legislative game than under IS. That, is, given an equilibrium outcome
under IS, there exists an equilibrium outcome of the legislative game, where the speaker
is weakly better off.

Briefly, the idea of the proof is as follows. Take an equilibrium z* under IS. Then
define a new agenda game, where all voters have strategy sets such that they can only
propose at least as good things for the speaker as under x*. By the existence theorem
there exists an equilibrium z** of that auxiliary agenda game. Finally, one can show that
x** is also an equilibrium of the original agenda game, and it is clearly at least as good
for the speaker as x*. This last step takes a bit of care, and we refer the reader to the

Appendix for the details.

Proposition 1. Let y;, i € N, be the ideal points of the agents, and let T < n. Then,
for every equilibrium outcome m*/ under IS there exists an equilibrium outcome of the
legislative game, m*#, such that m*4 =, m*!.

The second benchmark is the case of no competition, i.e., the legislative game with
T = |N|. In this case, independent scheduling and the legislative game coincide because

12



the speaker selects all proposals anyway.!! One might be tempted to believe that in

general, under no competition Speaker is worse off than when 7' < |N| in the legislative
game. However, as the following simple example demonstrates, this is not necessarily
true even in this simplest case when we only compare between the case when there is a
constraint on the number of proposals that can be considered and the case when there is
no such constraint. Here we show that such comparison fundamentally depends on the
specification of parameters. In the next section, we show that even when parameters are
fixred and we want to compare between different constraints, such comparisons depend
on precise scheduling constraints.

Example 2. Let yo = (=1, —1,...,—1),y; > 0,7 = 1,...,n. Denote m, = (Y11, Y22, -, Yn.n),
and assume that for each i = 1, ..., n, y; is such that a,(m,, N) = m,, so that in particular,
my =i 0,i=1,...,n. Now let T" < |N| and let 7" = |N|. Under the present assumptions,
the unique equilibrium outcome under no competition (under 77) is m,. On the other
hand, 0 is an equilibrium outcome under 7', which is very easy to check. Clearly, that
outcome under T is better for Speaker. Now suppose that all the agents have the same
ideal point yo = y;,Vi = 1,...,n. Then under 7" unique equilibrium outcome is yq, while
under 7', equilibrium outcome is different from yy, as long as yo ; # 0, Vj. In words, if all
the agents agree about what the outcome should be, then they are all better off if there
is enough time to move to that outcome.

5. COMPETITION AND DEADLOCKS

In this section we examine more closely the outcomes of the legislative game relative to
the number of slots that are available, for a relatively specific set of agents’ preferences,
as parametrized by their ideal point. We look at a situation, in which Speaker has
extreme preference relative to the rest of the legislature: i.e., she would like to move the
outcome from the status quo into the opposite direction than the rest of the legislature.
More precisely, we assume that yo = (—1,—1,...,—1), and y; > 0,7 = 1,...,n. In such a
situation, a deadlock on the status quo may obtain as a result of the competition between
committees for slots.

We do not necessarily believe this situation to be realistic. In fact, if the scheduling
agent, as well as the rules of the legislature, are first chosen (or can be subsequently
changed) by a simple majority vote, this configuration does not seem a very likely one.
A majority of the legislature would be better off with either a different choice of Speaker
or a different scheduling regime.

However, focusing on the present case of preference specification is reasonable since
every deadlock situation that can be assured by Speaker alone can also be assured when
not all the committees are outliers relative to Speaker’s preference (recall Example 1).
Under a different preference configuration, where for instance Speaker’s preference is

HTn this case, as well as under independent scheduling, the existence of equilibrium in the correspond-
ing game follows easily by standard arguments.
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more aligned with the majority, deadlock situations will not be that common. The
outcome will then just move closer to Speaker’s ideal point. The present environment is
particularly simple for illustrating how Speaker’s power matters.

It is somewhat surprising to us that under more competition, smaller T, it is not
necessarily easier to obtain a deadlock situation. This provides a further insight into how
the set of equilibrium outcomes might change as we vary the constraint on the number
of slots on the agenda.

From Section 2 recall that what matters for obtaining a deadlock when n = 2 is that
proposers’ ideal points lie on different sides of the diagonal. A general version of this
condition plays a role with n > 2 proposers, and is formulated as follows.

Definition 2 (COMPETITIVE CONDITION). A pair of proposers i,j € N,i # j satisfies
Competitive Condition (CC) if vy < yu and y;, < y;, where {i,j} = {k,[}.

The intuition behind CC is that two agents with ideal points on the opposite sides of
the diagonal (in the subspace of their proposals) will undercut each-other’s proposals all
the way to status quo, so that the resulting outcome of the legislative game is a deadlock.
In the present setup (see Example 2 from Section 4), some competition is better from
Speaker’s perspective than no competition. Here we show that even if the proposers’
ideal points are almost perfectly aligned, but CC is satisfied for sufficiently many pairs
of agents, then status quo is the unique equilibrium outcome. Note that in such a case,
the outcomes under independent scheduling are all strictly worse for Speaker. On the
other hand, we show that status quo may be sometimes less easily obtainable when T'
decreases, i.e. there may be a deadlock for some T' < n, but no deadlock, for T < n.

In the next proposition we provide a sufficient condition for status quo to be the
unique equilibrium outcome. This is essentially a condition on how much competition
there needs to be in order for it to force the outcome to 0.

Proposition 2. Let yo = (—1,—1,...,—1),y; > 0,i = 1,...,n and T" < n. Suppose that
for each L € N, |L| =T, there exists an ¢ € L and a j € N \ L such that CC is satisfied
for ¢ and 7. Then the unique pure-strategy equilibrium outcome is 0.

Proof. Suppose m # 0 is an equilibrium outcome. There exist equilibrium proposals m*,
and a equilibrium set selected by agent 0, L C N,|L| = T, s.t. m = my(m*,L). By
assumption there exist an i € L and a j € N \ L such that CC holds.

Case 1: y;; < yi; and y;; < y;;. Let m] be 7’s equilibrium proposal. If m; > 0, then there
exists an € > 0, s.t. 7 would be better off proposing m;- = m; — €, which is impossible.
Thus, m; = 0, and m; > maxjer{m;}. Since m # 0, it follows that there is an | € L,
with mj > 0, so that m; > mj > 0. But then, since | € L, it follows that ¢ would be
better off proposing m;, 0 < m; < mj, and would still be selected by the agent 0, which
is a contradiction.

14



Case 2: y;; < yi; and yj; < yz;. It mj > 0, then if m} < k, ¢ would be better off proposing
m; > m; so that j’s bid would be accepted. Moreover, m} = k is impossible, since by
assumption & > maxen\joy ||]], so that for every L', s.t. j € L', my(L',m*) = 0. In
other words, agent 0 would be better off choosing j’s proposal since that would preserve
status quo. Thus, m; = 0, and we proceed as in Case 1. O

In the following two corollaries we provide easily-verifiable sufficient conditions on
agents’ preferences for a deadlock. The conditions are stronger if T < n— 1, as compared
to T'=n — 1. The reason behind this is combinatoric. If T' = n — 1, then it is enough
that for each proposer ¢ there be one other proposer with whom ¢ competes for a slot on
the agenda; if T < n — 1 this is not enough, since then the pair can be excluded from the
agenda and there is no reason for them to compete. Example 3 further illustrates this
point.

Corollary 1. Let yo = (=1,—1,...,—1),y; > 0,4 =1,...,n. Suppose T =n—1lorT < %,
and suppose that for each proposer i € N, there exists a proposer j € N \ {i}, s.t. the
pair 7, j satisfies CC. Then the unique pure-strategy equilibrium outcome is 0, supported
by m; =0, Vi € N.

Corollary 2. Let yo = (—=1,-1,...,—1),y; > 0,5 = 1,...,n, and suppose 5 < T <
n — 1. Then 0 is the unique pure-strategy equilibrium outcome if either of the following
conditions holds.

1. There exists a proposer i € N, s.t. for each j € N \ {i}, the pair 7, j satisfies CC.

2. For each proposer i € N, [{j € N \ {i}, s.t. the pair i, j satisfies CC}| >n —T.

As we mentioned, if § <T < n — 1 the conditions on preferences are a bit stronger
for the uniqueness of 0-outcome. To round up this section, we provide an example, which
illustrates this: it can indeed happen that smaller T', or more competition, makes Speaker
worse off.

Example 3. Let N = {0,1,2,3,4}, n =4, yo = (—1,—1,—1,—1), and let the ideal points
of proposers be given by y; = (2,1,3,3),y2 = (1,2,3,3),y3 = (1,1,3,2),y4 = (1,1,2,3).
Then, if T" = 3, by Corollary 1, the unique pure-strategy equilibrium outcome is 0.

On the other hand, observe that the ideal points of the agents do not satisfy the
conditions in Corollary 2. Indeed, for T' = 2, there exist non-zero equilibrium outcomes.
For instance, it is easy to verify that m; = my = m3 = my = 3,L = {3,4} is an
equilibrium, with the outcome m,(m, L) = (0,0, 3, 3).

6. ASSIGNMENT OF JURISDICTIONS

In this section we provide an example showing how the present model can be embed-
ded in a richer setup. A natural question to consider in the context of the legislature is
how the committees would want to choose their jurisdiction in an initial stage, when the
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set of jurisdictions is fixed. We use as the basic game the legislative game introduced in
the preceding two sections.

Clearly, the assignment of jurisdictions matters, as each voter proposes a move only
on one dimension, and it is conceivable that different assignments may facilitate different
equilibria. In the next extended example we illustrate this fact. We take a simple scenario
with 3 voters and Speaker and our aim is to analyze the equilibria of an extended game, in
which the voters first choose their jurisdictions sequentially, and afterwards, the legislative
game is played. Since this may happen according to various orderings of the voters, we
first study all possible orderings, and describe the outcomes under every ordering. 12
Different agents may prefer different orderings, and it is not always true that an agent
wants to move first - an agent may prefer to not be the most senior. As an aside, we also
show that the condition in Proposition 2 is sufficient but not necessary.

Example 4. For the purpose of this example we enumerate the agents with Greek letters,
because we will vary their jurisdictions and confusion may arise otherwise.

Let n =3, N ={0,a, 3,7}, let T =2, and let the ideal points of the voters be given
by Yo = (2, %, 1), ys = (1, %, 0), and y, = (%, 0,2). Each voter is assigned a jurisdiction,
and each assignment of voters to jurisdictions is a one to one mapping from {«, 3,7} to
{1,2,3} and can be represented by an ordered triplet. For instance, the triplet (3, a,~)
represents the assignment where voter 3 proposes on dimension 1, & on dimension 2, and
~ on dimension 3. We now show that different assignments foster different outcomes in
the proposing and voting stages. Note that there are six possible assignments.

1. (e, B,7). Here the CC holds for a and (8 and for @ and . To check for instance
the first one observe that y,1 > ¥a2 and yg1 < yso which is CC since under
this assignment « proposes on first dimension and 3 on the second one. Hence,

Condition 1 of Corollary 2 holds, and the unique equilibrium outcome is 0.

2. (a,7, ). Now the CC only holds for 7, 5 and the sufficient condition in Proposi-
tion 2 is not satisfied. Nonetheless, the unique equilibrium outcome is 0. To see this,
first note that in every equilibrium with non-zero outcome (and non-zero proposals)
~ and (3 have to be selected - otherwise they would compete each other out by CC.
Thus, L ={2,3} = {v, 8} and let m* = (m}, mj, m}), m{ > 0, mi > m3, m5. But
no matter what the proposal mj of agent 3 is, agent 2 always has an incentive to
propose mj = 0, and analogously for agent 3. This shows that the condition in

Proposition 2 is sufficient but not necessary.

3. (B, ,7). CC holds for 3, a and 3,7 so that the unique outcome is 0 by Corollary 2.

4. (8,7,a). CC holds for 5,v and «,~ so that the unique outcome is 0.

5. (v,a, ). The CC holds only for 7,3, so that in every equilibrium with non-zero

outcome it has to be that L = {1,3} = {7, 3}. Since y33 = 0 we have that mj = 0.

12In the US Congress, the assignment to committees is done according to seniority, hence a specific
exogenously imposed ordering.
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The equilibria are then given by proposals m> = m; =k, k < %, m; = %, mr, > %,

and in every subgame L = {~,/}, so that the set of equilibrium outcomes is
{(£,0,0) | k < §}.

6. (7,0, a). Again CC holds only for 7, 3, so that L = {~,5} = {1,2}. The set of

equilibrium outcomes is now given by {(k,k,0) | k < 2}. To see this observe that
an outcome (k, k,0) is supported by bids z1 = 29 = 23 = k, Vk € [0, %), and the
outcome (%, %,O) is supported by bids z1 = x5 = 2, z3 > % Notice that in the

27
latter equilibrium agent v obtains a payoft 0.

Now we analyze the extended game where the voters first sequentially choose their
assignments, according to an exogenously imposed ordering (seniority), after which the
proposal, selection, and the voting stages take place. For example, suppose the seniority
is a, 3,7, a chooses the jurisdiction first, then 3, and finally ~. If for instance the choices
were a — 1, f — 3, v — 2, then we are in Case 2 above and the final outcome is 0.
Observe that such choices of jurisdictions are not subgame-perfect. We again look for
the SPNE of the extended game, where before the three stages of the Legislative Game
voters sequentially choose their jurisdictions according to the exogenously given seniority.
One could analyze more complicated versions of the choosing-the-jurisdictions stage, but
here we limit ourselves to a simple setup.'?

There are 6 different seniority orderings in which the voters can choose their jurisdic-
tions. Ordered lexicographically:

o1 = (aaﬁ7’7>a02 = (a7’77ﬁ)703 = (ﬁaav/y)aoﬁ = (ﬁa’yaa)vo-S = (’770475)70-6 = (775705)

Note that {0y, ..., 06} is not the set of actual assignments of the jurisdictions but just
the set of possible orderings in which the voters pick them, e.g. under o3, [ is the first
to pick, a the second, and « last. Once the voters have picked their jurisdictions, we end
up in one of the cases given by 1-6 above.

From the outcomes under 1-6 it is immediate that the incentives of a and 3 are aligned
when they choose their assignments. Both prefer the outcome under 6 to that under 5
to everything else. However, v prefers the outcome under 5 to everything else, since only
under 5 he gets a higher utility than under sq. Thus, when v chooses first he can get
an outcome no better than 0, whereas if either § or a choose first v may get a better
outcome than 0.* Thus, having the highest priority in choosing the jurisdiction may
not always be advantageous for ~, and he may be subject to a first-mover disadvantage.
With this we conclude our example.

130ne could even expand the game in which also Speaker is chosen by the legislature, or perhaps even
the sizes of different jurisdictions, i.e., where some jurisdictions have more than one dimension. For this
last exercise, one should first analyze more complicated versions of legislative game. Still, existence of
equilibria is guaranteed in such games by Theorem 1.

14Indeed, if we apply for instance a forward induction refinement, 8 and a should always choose an
outcome which leads to Case 5 above, whenever either of them moves before ~.
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7. DISCUSSION

In the present paper we have provided the general framework of the scheduling game in
the legislative process. A very natural application is to provide a more realistic model of
the legislative process where there is scarcity of time on the one hand, while on the other
hand, there is an agent wielding large agenda powers. We have formulated the scheduling
game with this application in mind, especially with the voting outcome function mapping
the selected proposed moves from the status quo into final outcomes.

While there is a considerable amount of complication that arises in the scheduling
game, it provides a very rich framework for the analysis of political process. Moreover, in
the scheduling game many of the standard problems of voting models do not arise. First
and foremost, the existence of equilibria is assured by our general existence theorem.
Second, for the more specific case of the legislative game, the equilibria are relatively well
behaved, and one does not run into the problems such as “Chaos theorems” (McKelvey
1976; see also Plott 1967) . Thus, a rational-choice model, built on purely non-cooperative
foundations, can provide well calibrated insights into the legislative process. Finally, the
general model scheduling game provides other possible formulations of the committee-
bargaining problem, in particular, the jurisdictions of committees in practice overlap. In
traditional models, such overlaps cause problems with existence of equilibria, while in the
present model, no such problem arises. Modified scheduling game, where the outcome
function is not a voting function, but simply the choice function of the auctioneer (Speaker
in the present model) might also provide a useful model for other applications in Political
Economy.!?

An issue that arises in our model is the power delegated to Speaker. It is important
to observe that this power is weaker than a veto power, since in our model, Speaker has
to choose T proposals out of n, and cannot choose less. When Speaker can commit ex
ante, before any of the proposals are submitted, to choosing a precise number of slots
on the agenda, this describes precisely the situation arising in our model. However, if
Speaker is allowed to decide how many proposals to choose once he observes the set of
proposals this would qualitatively change the set of equilibria. Clearly, Speaker would
wield a much greater power since he would then always be able exclude any moves
contrary to his preferences. At the same time, the incentives to proposers would also
change. In particular, deviations from equilibrium strategies might generate different
sets of outcomes, e.g., if there are 2 proposers both proposing something unfavorable to
Speaker, he could simply choose nothing. In short, the set of equilibria of a model where

15For instance, think of a government auctioning off a contract for developing a public project. Clearly,
the government cares not only about the revenue that it raises, but also about some other parameters of
quality of the development. On the other hand, the competitors for the project do not care only about
whether they get the project or not, but also who gets the project and how many resources they would
have expend, as this will affect the ability of this contractor to compete for other projects. One such
example are the spectrum auctions: there, the government cares about raising revenue, as well as about

the concentration of the industry, the subsequent competition in the product market, and investment in
R & D.
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Speaker is allowed to pick any number of proposals after they are revealed to him is most
likely going to be different from the union of the set of equilibria in our model - the union
taken over the number of proposals that Speaker has to pick.

An interesting extension of the present model would be to account for incomplete
information. For instance, perhaps the simplest specification of the legislative game with
incomplete information is one where only 1 is private information to Speaker, and each
voter obtains a signal about it, e.g., the component corresponding to his jurisdiction.
Another relatively simple incomplete-information version of legislative game is one where
incomplete information is on status quo - that is status quo embodies a resolution of some
randomness. One would need to simplify agents’ preferences, but our belief is that such
models might ultimately prove very useful.

We stress that this model of scheduling developed is meant only as more plausible
representation of the legislative process that is used in practice in most democratic leg-
islatures. It is an open question as to why so many legislatures have adopted such a
system to allocate scarce plenary time. Our model, for example, is subject to Riker’s
(1980) critique of legislative design: why would a majority of legislators delegate this
scheduling authority to the Speaker since this will allow her to expropriate significant
policy rents? Clearly, this would require a complete model of optimal legislative design,
which is beyond the scope of this paper. However, our general model may provide the
initial framework for such analysis.
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A. PROOFS
A.1l. Theorem 1

Proof. The proof follows from the main Theorem of Simon and Zame(1990). To show
that, we follow their discussion on the last paragraph of p. 864 of their paper.

Construct a set S* as follows. Take a ¢ > %, T < N, and let foreach L C N,s.t. |L| =T,

CH (L) ={m e M | my(m, L) =¢ my(m,L'),VL' # L,|L'| =T},
Cr(L)y={me M |0=my(m,L) ¢ mg(m,L"),VYL' # L, s.t. |L'| =T, and my(m, L") # 0}.

Define
Cr(L) = CE(L) U Cr (L),

and
S* = Uren,nj=rCr(L).

Intuitively, Cr(L) is the set where Speaker strictly prefers picking the subset of pro-
posals L over any other subset of proposals, and S* is the set of proposals where he has
a strict preference for choosing some set of proposals. By continuity of Speaker’s prefer-
ences, there exists for every point m € S* a neighborhood I',,, I';,, open in S, I',, C S*,
and such that Speaker selects the same subset of proposals on the whole I';, (i.e. if
m € Cr(L) then T',, C Cp(L)). Thus, the subgame-perfect outcome correspondence
¢ : S* — M is continuous on S*.

The set S* is dense in S = M; x My x ... x M,,. The reason is local non-satiation
of Speaker’s preferences almost everywhere (except at his ideal point). Thus, ¢ can be
extended to an upper hemi continuous, bounded, and convex-valued correspondence )
on S. To see that such @) is subgame perfect note that whenever there is no indifference
for Speaker in the subgames, it has to be that m € S*, and whenever m € S\ 5%,
Speaker can resolve his indifference either way, or by picking the top sets of proposals
probabilistically. Note that in equilibrium the Speaker resolves his indifference in pre-
cisely the right way. Therefore, by applying backward induction the game in stage 1,
with the outcome correspondence () satisfies assumptions in Simon and Zame(1990), and
an equilibrium exists. Hence a subgame-perfect equilibrium of the original game exists,
in which Speaker’s resolution of his indifference is specified as a part of the equilibrium.

]
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A.2. Proposition 1

Proof. Let T < N. Let (m*/, L!) be the vector of equilibrium proposals and the set of
selected voters under IS. Now define a new legislative game [, where the set of feasible
proposals is given by

M; = {m; | my; € [by, bi], mi;=0,5 # 1},
for each i € N. We will now appropriately specify the constants b; and b;.

For each i € N\ L' let b, = —K,b; = K, where recall that K is the constant
bounding the proposals in the definition of the original scheduling game. For each i € L!
proceed as follows. If m!! # yo; then define m/ # m! such that m*/ ~y m'!, where

'

m; = m}', Vjnei and m;l = m;. If mi! = yo,; then let m) = m}!. Finally, let {b,,b;} =

{min{m;?, m;}, max{m;’, m;}}

By Theorem 1 there exists an equilibrium of the legislative game I'. Denote the
equilibrium proposals by m#’, and by L4 the selection rule of agent 0. We show that
either:

(i) m?" and LA also constitute an equilibrium of T, or

(ii) There exists another equilibrium (m*, L*) of I" in which Speaker is better off.

Clearly, it is enough to prove (ii). We need the following.

Lemma 1. Let (m*,L*(.)) be an equilibrium of T', L*(m*) = L, s.t. ag(m*, L) # 0.

Let ( (L), L) be the IS equilibrium when L are the selected voters. If a,(m*, L)) #

ag(m* ( ), L) then there exists a voter j € N\ L and a voter i € L, s.t. a,(m*, L) ~
LAA{i

)
aq(m” tU{ih)

Proof. The proof follows from the additive separability of voters’ preferences: if the
outcome is not 0, then regardless of what the outcome is in other dimensions, in his own
dimension a voter always prefers to bid his ideal point. Formally, assume (m*, L*(.)) is a
SPNE of the legislative game, and assume a,(m*, L)) # a,(m*!(L), L), i.e., the outcome
in this equilibrium of the legislative game is different from the outcome under independent
scheduling when the same voters are selected. Therefore, at least on of the voters, say
i € L must be in the legislative game making a proposal which he is not making under
the IS. By additive separability, it is clear that this voter would have preferred to make
the same proposal as under IS, and by local strict monotonicity of ¢’s preferences, it must
be that 3j € N\ L which would make speaker indifferent to selecting i’s proposal or j’s
proposal. This concludes the proof of the lemma. ]

Now assume that (m?', LA") is not an equilibrium of I". Thus, there exists an agent
i € L* who can deviate in T' to make a different proposal which would get selected, and
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which would change the oucome. But the only such possible deviation is in order to make
0 be the outcome of the voting stage, by above Lemma 1. Since ¢ would get selected in
I, this implies that 0 is preferred by Speaker to aq(mA/, LA (mA)) in T, ]
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